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Abstract
Many variants of the vehicle routing problem (VRP) pose significant computational challenges in logistics
optimization, and improvement heuristics have emerged as effective tools for refining solutions found
by local search methods and meta-heuristics. This paper introduces exact route modifying improvement
models (RMIM) that aim to assemble high-quality solutions by selecting routes from a pool while allowing
modifications to be made to the selected routes. We evaluate these models on vehicle routing problems
with intra-route constraints, including the multi-trip VRP (MTVRP), the pickup and delivery problem
with time windows (PDPTW), and the VRP with time windows (VRPTW). Our proposed matheuristic
approach achieves best known solutions for most benchmark instances for the MTVRP, and the RMIMs
improve many existing solutions for both the PDPTW and the VRPTW. These findings showcase the
value of using RMIMs to enhance solutions to different types of VRPs.
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1 Introduction

Vehicle routing problems are common in practice but also serve as important testbeds in operations research.

These complex optimization problems usually consist of a fleet of vehicles based at one or several depots that

must serve the demands of customers. The most studied vehicle routing problem, the capacitated vehicle

routing problem (CVRP), considers a single depot that serves a set of customers with a capacitated fleet

of vehicles in a single time period (Laporte, 2009). However, richer vehicle routing problems that include,

for example, time windows, pickups and deliveries, multiple time periods, or inventory management have

also been extensively studied (Toth and Vigo, 2014). Vehicle routing problems are known to be NP-hard

(Lenstra and Kan, 1981), which means that they can take an impractically long time to solve to optimality

using exact algorithms. As a result, heuristic algorithms have been developed to solve these problems

approximately. Heuristics are faster than exact algorithms and can find good-quality solutions in a shorter

amount of computing time (Cordeau et al., 2005).
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One specific type of heuristics, namely improvement heuristics, has proven to be an important and

efficient tool to solve vehicle routing problems. Improvement heuristics are algorithms that aim to improve an

existing solution by iteratively modifying it. They are widely used to solve problems in various domains, such

as manufacturing, transportation, healthcare, and supply chain management. Traditionally, these heuristics

use local search techniques to improve a given solution. Local search algorithms start with an initial solution

and make incremental changes until an optimal or good solution is found. These algorithms can either

follow a straight path, where only modifications that improve the solutions are accepted, or a path where

temporary deteriorations of the objective function value are accepted. Descent or hill climbing heuristics

are examples of the former. They always stop in a local optimum and are therefore very dependent on the

initial solution. The latter group can offset these limitations by accepting worsening solutions (Van Breedam,

1995). Tabu search, simulated annealing, and adaptive large neighborhood search algorithms are examples

of these types of improvement heuristics and have been used with great success on several vehicle routing

problems (Van Breedam, 1995; Pisinger and Ropke, 2007; Cordeau and Laporte, 2005). Thus, improvement

heuristics are flexible, as they can be scaled to solve problems of varying complexity. Moreover, they can be

customized to meet the specific constraints of individual problems.

In recent years, the performance of CPUs and mathematical programming solvers has largely increased.

Consequently, combining mathematical programming techniques with heuristic methods has become more

common to solve optimization problems more effectively. These solution methods are usually referred to as

matheuristics. Matheuristics often have the heuristic advantage of solving problems quickly. In addition, they

have the ability to handle a larger number of constraints and variables as well as higher complexity compared

to traditional heuristics. Consequently, several improvement matheuristics have been developed. For routing

problems, Archetti and Speranza (2014) define three types of matheuristics in their survey paper, where

improvement matheuristics is one of them. One of the most popular and successful improvement approaches

is collecting routes in a route pool during the optimization process and using a set partitioning formulation

at different intervals to select a feasible subset of routes. This approach has been successfully used by several

researchers, including Archetti et al. (2017) for the inventory routing problem (IRP), Alvarenga et al. (2007)

for the vehicle routing problem with time windows (VRPTW), and Subramanian et al. (2013) for several

vehicle routing variants such as the CVRP, the Asymmetric VRP, the Open VRP and the Multi-depot VRP

among others.

The major drawback of the set-partitioning approach is that if the route pool does not contain the

correct routes, the approach will not produce good solutions. This holds even if the pool includes most of the

optimal routes or routes very similar to the optimal ones. To deal with this drawback, several researchers

have proposed set-partitioning-inspired formulations that select routes from a route pool; however, smaller

and larger modifications of the routes are allowed. We refer to these improvement formulations as Route

Modifying Improvement Models (RMIMs). Typically, the costs of these route modifications are calculated

approximately (Russell, 2017; Solyalı and Süral, 2017; Manousakis et al., 2022). However, to solve the

production routing problem (PRP), Vadseth et al. (2023) developed an exact RMIM where each modification

is calculated exactly in terms of cost with respect to the original problem and any solution to the RMIM is

a feasible solution to the original problem. In this RMIM, routes are selected from a route pool. Still, single

customer nodes can be both inserted or removed from each route, and their multi-start route improving
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matheuristic for the production routing problem was able to improve the state-of-the-art and find several

new best known solutions for the PRP. This methodology was further developed in Skålnes et al. (2023),

where the authors successfully solved the IRP, the split delivery vehicle routing problem (SDVRP), and the

CVRP. In this version, longer sequences of customers can be inserted or removed from a route.

As described above, improvement heuristics can be very useful in solving vehicle routing problems. The

exact RMIMs used by Vadseth et al. (2023) and Skålnes et al. (2023), are, for example, integral parts of some

of the current state-of-the-art solution methods for the IRP, PRP, and SDVRP. Vehicle routing problems

usually involve high costs and investments, and a small improvement to the objective function can result

in significant savings. A natural question then, which is also the research question of this paper, is whether

the RMIM proposed in Skålnes et al. (2023) is efficient for solving other types of vehicle routing problems.

Moreover, can they be used to improve solutions found by other solution methods?

A common characteristic for the problems where exact RMIMs have been successful (PRP, IRP, and

SDVRP) is that each customer can be visited multiple times, by different vehicles, and the quantities

delivered to the customer on these visits need to meet the total demand. These types of constraints are

often referred to as inter-route constraints since they involve multiple vehicle routes. Conversely, intra-route

constraints limit what constitutes a feasible route. In the case of the PRP, IRP, and SDVRP, the only intra-

route constraint is the vehicle capacity which limits the total quantity delivered by a route, and is thus

dependent on the set of customers visited by a route, but not on the sequence in which they are visited.

Sequence-dependent intra-route constraints include time windows, pairing and precedence relationships,

load onboard the vehicle (if there are both pickups and deliveries made at the customers), among others.

Such intra-route constraints present a substantial challenge for RMIMs as they complicate the potential

modifications. The insertion of a customer into a route may depend on multiple factors, and the most

cost-effective insertion position may not be feasible without several other route adjustments. Notably, the

potential of RMIMs for vehicle routing problems with a higher degree of intra-route constraints has not

been thoroughly explored in the published literature. Therefore, this study aims to contribute to filling the

gap by formulating and evaluating RMIMs for vehicle routing problems where intra-route constraints play

a significant role.

We look at problems where time is an important parameter. More specifically, we address the multi-

trip vehicle routing problem (MTVRP), the pickup and delivery problem with time windows (PDPTW),

and the VRPTW. These are all well-studied vehicle routing problems with several intra-route constraints

and well-established benchmark instances. We propose a novel matheuristic for the MTVRP that finds the

best known solution for 76 of 104 benchmark instances, 28 of which are new to the literature. Further, we

demonstrate that our proposed RMIMs can improve the best known solutions for both the PDPTW and

VRPTW by warm-starting with the current best solution. The RMIMs are able to improve 203 benchmark

instances for the PDPTW and 20 for the VRPTW. This is an interesting finding, since multiple researchers

armed with different solution methods have thoroughly examined these problems, and we demonstrate that

RMIMs can improve solutions where existing methods have reached a local optimum or otherwise converged.

Consequently, it is clear that these MIPs complement the search space of traditional methods. Therefore,

our research shows that the vehicle routing community should look closer into RMIMs and that they are a

valuable tool for finding better solutions to many types of vehicle routing problems.
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The rest of the paper is organized as follows: In Section 2, we describe a general version of the RMIM

presented in Skålnes et al. (2023) that serves as the basis for the problem-specific RMIMs presented later

on. In Section 3, we introduce an RMIM for the MTVRP and a novel algorithm for solving the problem.

Section 4 expands the RMIM to the VRPTW and PDPTW, and our computational results are provided in

Section 5. Lastly, Section 6 provides our concluding remarks.

2 A general exact route modifying improvement model for routing

problems

The general RMIM introduced in this section builds on the work presented in Vadseth et al. (2023) and

Skålnes et al. (2023). Here, we present the sets, variables, functions, and constraints needed to formulate

the RMIM independent of the specific routing problem. The presented RMIM can be used to solve routing

problems with a set of customers N , indexed by i, served by a fleet of vehicles K, indexed by k, starting

and ending their routes at a single depot denoted by node 0. The routing problems can be modeled on a

graph G = (N0,A), where N0 = N ∪ {0} is the set of nodes and A = {(i, j) ∈ N0 ×N0 | i ̸= j} is the set of

arcs connecting the nodes in the graph. The parameter Cij is defined as the cost of traversing arc (i, j).

The RMIM is a modified version of a route-based model for a routing problem where a binary variable

λr ∈ {0, 1} indicates whether route r in the set of routes R is used or not. Here, a route is defined as a

Hamiltonian cycle that visits a subset of customers in N , starting and ending at the depot. Each route r has

an associated parameter CT
r defined as the transportation cost of the route. The vehicle routing problem can

only be solved by combining the different routes in R. However, unlike in a pure set-partitioning setting, the

routes in R can be modified by inserting or removing customers in the proposed RMIM. All modifications to

the original routes are calculated exactly in the objective function. This is true even in cases where multiple

changes are made simultaneously.

To describe the RMIM, we introduce the following notation. The customers visited in route r ∈ R are

represented by the set Nr. We also introduce a set of clusters C. Here, a cluster c ∈ C is an unordered

subset of customers c ⊆ N that can be added to a predefined position in a route. Usually, it is not feasible

to insert all nodes into every route; hence, we need to introduce the set Cr which denotes the clusters that

can be inserted into route r. For example, if a node can only be visited once by the same route, we define

Cr = {c ∈ C|c ∩ Nr = ∅}. The binary variable zcr is also introduced, which takes value 1 if cluster c ∈ Cr is

inserted into route r ∈ R, and 0 otherwise. As mentioned above, cluster c is always inserted in a predefined

position, p∗r(c), in route r. How this position is determined depends on the specific problem. Often, this can

be the position that increases the total cost of the route the least. If this is the case, p∗r(c) is calculated as:

p∗r(c) = argmin
p∈1,...,|Nr|+1

{CSP (ir(p− 1), c, ir(p))− Cir(p−1),ir(p)}, r ∈ R, c ∈ Cr. (1)

Here, the function CSP (istart, c, iend) gives the cost of the shortest path starting at node istart, visiting

all nodes in c, and ending at node iend. Furthermore, the node placed in position p in route r is returned

by the function ir(p). Note that for all routes r ∈ R, the depot has both the first position 0 and the last
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position |Nr|+ 1. The cost, CI
cr, of adding cluster c ∈ Cr to route r ∈ R is calculated as:

CI
cr = CSP (ir(p

∗
r(c)− 1), c, ir(p

∗
r(c)))− Cir(p∗

r(c)−1),ir(p∗
r(c))

, r ∈ R, c ∈ Cr. (2)

As seen above, the nodes in a cluster get an order when the cluster is coupled with a route and a specific

position.

In addition, we introduce the binary variable wprθ, which takes the value 1 if θ ∈ Θ consecutive nodes

starting from position p ∈ Pθ
r are removed from route r ∈ R. The set Θ is defined as Θ = {1, . . . ,M}, where

the parameter M denotes the maximum number of consecutive customers that can be removed. Let the set

Pr denote all positions in route r. Moreover, the set Pθ
r ⊂ Pr = {1, ..., |Nr|+1} denotes the positions, p, in

route r where θ consecutive nodes starting from p can be removed. The cost savings of removing θ nodes

starting from position p in route r is calculated as:

CR
θpr =

p+θ∑
p′=p

Cir(p′−1),ir(p′) − Cir(p−1),ir(p+θ), r ∈ R, θ ∈ Θ, p ∈ Pθ
r . (3)

The introduced notation, including ir(p), p∗r(i), CI
cr and wprθ is illustrated in Figure 1. Here, a route

r, marked with dotted arrows, is modified by inserting and removing customers, and the resulting route is

marked with solid arrows.

0

a

b

c

d

e

f

Route r

Cluster c̃

xbr = 1

xcr = 1w2r2 = 1

ir(5) = 0

ir(4) = d

p∗r(c̃) = 5

zrc̃ = 1

CT
r = C0a + Cab + Cbc + Ccd + Cd0

CI
c̃r = CSP (ir(4), c̃, ir(5))− Cir(4),ir(5)

= Cde + Cef + Cf0 − Cd0

CR
2r2 = Cab + Cbc + Ccd − Cad

0 → a → d → e → f → 0 : CT
r + CI

c̃r − CR
2r2

= C0a + Cad + Cde + Cef + Cf0

Fig. 1 A route consisting of the depot and nodes a, b, c, and d is changed to a route consisting of the depot and nodes a, d,

e, and f by inserting a cluster and removing two consecutive nodes. The cost of the route is then changed from C0a + Cab +

Cbc + Ccd + Cd0 to C0a + Cad + Cde + Cef + Cf0.

The objective function for the general RMIM can be formulated in the following way:

min
∑
r∈R

CT
r λr −

∑
r∈R

∑
θ∈Θ

∑
p∈P θ

r

CR
θprwprθ +

∑
r∈R

∑
c∈Cr

CI
crzcr. (4)

To keep the calculations of route modifications correct, we must impose some additional limitations. To

ease readability, we introduce the binary variable xir, which takes the value 1 if node i is removed from route

r (node i must be a part of route r), and 0 otherwise. The additional constraints are defined as follows:

∑
θ∈Θ

p∑
p′=p−θ+1

wp′rθ = xir(p)r, r ∈ R, p ∈ Pr \ |Nr| − 1, (5)

∑
c∈Cr:p∗

r(c)=p

zcr ≤ λr, r ∈ R, p ∈ Pr, (6)
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xir(p∗
r(c)−1)r + xir(p∗

r(c))r
≤ 2(λr − zcr) r ∈ R, c ∈ Cr, (7)

xir(p−1)r + xir(p+θ)r ≤ 2(λr − wprθ) θ ∈ Θ, r ∈ R, p ∈ P θ
r . (8)

Constraints (5) link the xir variables with the wprθ variables and state that a customer cannot be

removed if one of the corresponding wprθ variables is not set to 1. Constraints (6) make sure that only one

cluster can be inserted in position p in route r. Additionally, constraints (7) ensure that the nodes before

and after the position where cluster c can be placed in route r cannot be removed if cluster c is added to

the route. Constraints (8) are similar, but involve removed nodes. Here, it is stated that we cannot remove

the nodes placed before or after a sequence of consecutive nodes if the nodes are removed. The last three

constraints are needed since the cost calculations of removing or adding nodes include the nodes before or

after the added/removed nodes. Hence, without these constraints, the cost calculations would not be correct

and, instead, the model would approximate the costs of modifying the routes. Please note that in constraints

(7) and (8), the variable x0r is not defined (or equivalently its value is set equal to zero).

The given notation and constraints are always needed to formulate the RMIM in addition to the problem-

specific constraints. However, some of the variables might be adjusted to handle relevant features of a specific

problem.

3 The multi-trip vehicle routing problem

The multi-trip vehicle routing problem (MTVRP) is an extension of the CVRP. This is a single-period

problem where each customer i ∈ N has a demand, Di, that the depot must serve. Each vehicle k ∈ K

starts and ends its routes at the depot and has a loading capacity of Q. Unlike the CVRP, in the MTVRP,

each vehicle k ∈ K has a time limit, Tmax, limiting its total driving time. Furthermore, vehicle k can make

multiple trips (routes) as long as the combined driving time of all the trips transversed by k is at most

Tmax. The cost of using arc (i, j) is commonly set equal to the driving time, i.e., Cij = Tij for every arc.

For more details on the MTVRP, we refer to the survey paper by Cattaruzza et al. (2018).

3.1 The RMIM for the MTVRP

To formulate an RMIM for the MTVRP, we must add an index k to route variables λr to specify which

vehicle k uses route r. In addition, we must introduce the variable trk, which is the total time vehicle k

uses on route r. This variable is introduced to avoid adding the k index on variables zcr, xir, and wprθ. The

parameter TT
r denotes the original travel time of route r, while T I

cr and TR
prθ denote the change in travel

time when inserting cluster c or removing θ consecutive nodes from route r. All other notation remains the

same as is described for the general version in Section 2. Furthermore, p∗r(c) is defined as in Equation (1),

CI
cr is defined as in Equation (2), and Cr = {c ∈ C|c ∩ Nr = ∅} since the only limitation we have regarding

insertions is that each customer can only be visited once. Lastly, we introduce the demand of cluster c as

DC
c =

∑
i∈c Di. We can then define the RMIM for the MTVRP in the following way:

min
∑
r∈R

∑
k∈K

CT
r λrk −

∑
r∈R

∑
θ∈Θ

∑
p∈P θ

r

CR
θprwprθ +

∑
r∈R

∑
c∈Cr

CI
crzcr (9)
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Constraints (5),∑
c∈Cr:p∗

r(c)=p

zcr + xir(p)r ≤
∑
k∈K

λrk, r ∈ R, p ∈ Pr, (10)

xir(p∗
r(c)−1)r + xir(p∗

r(c))r
≤ 2(

∑
k∈K

λrk − zcr) r ∈ R, c ∈ Cr, (11)

xir(p−1)r + xir(p+θ)r ≤ 2(
∑
k∈K

λrk − wprθ) θ ∈ Θ, r ∈ R, p ∈ P θ
r . (12)

∑
r∈R:i∈Nr

(
∑
k∈K

λrk − xir) +
∑
r∈R

∑
c∈Cr:i∈c

zcr = 1, i ∈ N , (13)

∑
i∈Nr

Di(λrk − xir) +
∑
c∈Cr

DC
c zcr ≤ Q, r ∈ R, k ∈ K, (14)

∑
r∈R

trk ≤ Tmax, k ∈ K, (15)

TT
r −

∑
θ∈Θ

∑
p∈PΘ

r

TR
prθwprθ +

∑
c∈Cr

T I
crzcr ≤ trk + Tmax(1− λrk), r ∈ R, k ∈ K, (16)

∑
k∈K

λrk ≤ 1, r ∈ R, (17)

λrk ∈ {0, 1}, r ∈ R, k ∈ K, (18)

zcr ∈ {0, 1}, c ∈ Cr, r ∈ R, (19)

xir ∈ {0, 1}, i ∈ Nr, r ∈ R, (20)

wprθ ∈ {0, 1}, θ ∈ Θ, r ∈ R, p ∈ Pθ
r , (21)

trk ≥ 0, r ∈ R, k ∈ K. (22)

The objective function (9) minimizes transportation costs. Constraints (10), (11), and (12) are adaptions

of constraints (6), (7), and (8) accounting for the k index in the variables λ, while constraints (13) state

that a customer can only be visited once. Furthermore, constraints (14) make sure that the vehicle capacity

is respected. Constraints (15) state that the combined driving times of the routes a vehicle traverses cannot

exceed the time limit, while constraints (16) control the time a vehicle spends on each route. Constraints

(17) ensure that a route can only be used once. Finally, constraints (18) - (22) state the variable domains.

3.2 A novel matheuristic for the MTVRP

The MIP described above is small enough to be solved multiple times given that the route set R is not too

large. The standard benchmark set of instances for the MTVRP, introduced by Taillard et al. (1996), allows

infeasible solutions (the vehicle driver is allowed to have overtime). Here, each unit of overtime is multiplied

by 2 to account for the associated costs. However, a solution without overtime is always considered superior

to one with overtime for these instances, even if the transportation costs are higher. The RMIM can be

updated to handle this set of instances by introducing the overtime variable ok ≥ 0, which represents the

overtime induced by vehicle k. We must also add the term
∑

k∈K 2ok to the objective function. In addition,
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constraints (18) must be rewritten to:

∑
r∈R

trk ≤ Tmax + ok, k ∈ K. (23)

Lastly, Tmax is no longer a valid big-M constant in constraints (16). Hence, the constraints must be

rewritten to:

TT
r λrk −

∑
θ∈Θ

∑
p∈PΘ

r

TR
prθwprθ +

∑
c∈Cr

T I
crzcr ≤ trk +

∑
c∈Cr

T I
cr(1− λrk), r ∈ R, k ∈ K. (24)

By making these changes, we can introduce the following simple yet efficient matheuristic. First, we solve

the MTVRP instance as a CVRP instance. The routes given from the CVRP solution form the route set R,

which is later used in the RMIM. By assigning the routes in R to the different vehicles in K we already have

a feasible solution to the original MTVRP instance (although it might include overtime). This connection

has been exploited in the heuristics proposed by Taillard et al. (1996) and Petch and Salhi (2003), where

several CVRP solutions are created before a bin packing problem is solved to assign routes to vehicles. In our

matheuristic, we instead solve the RMIM to assign routes to each vehicle. It can also make improvements

to the routes in R. The RMIM is solved for several iterations, where we update R between each iteration

and set it equal to the routes of the current solution. In each iteration, we warm-start the MIP with the

current solution. The matheuristic is summarized in Algorithm 1.

Algorithm 1 A matheuristic for MTVRP
1: Input: MTVRP instance

2: Solbest = ∞

3: SolCV RP = CVRPSolver(MTVRP instance)

4: R = getRoutes(SolCV RP )

5: for it iterations do

6: Sol = RMIM(R)

7: if Sol < Solbest then

8: R = getRoutes(Sol)

9: Solbest = Sol

10: else

11: Break

12: end if

13: end for

14: Return Solbest

Here, Solbest is the current best solution and SolCV RP is the solution produced by the CVRP solver.

This work uses the genetic algorithm presented in Vidal et al. (2012) and the open-source implementation

described in Vidal (2022). The function getRoutes returns the routes associated with a solution to either

the CVRP or the MTVRP.

To populate the set of clusters C, in this work we have used a k-means algorithm (Ahmed et al.,

2020) to produce clusters with cardinality greater than 1. Here, a k-value = ⌊|N |/2⌋ determines the
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number of clusters. If we define the clusters produced by the k-means algorithm as Ck, we can set

C =
{⋃

i∈N {i}
⋃

c ∈ Ck : |c| ≤ H
}
. The parameter H is the largest cluster size we want to include in the

model, and it is set to 4 in this work.

4 Vehicle routing problems with time windows

In this section, we analyze two other routing problems, namely, the vehicle routing problem with time

windows (VRPTW) and the pickup and delivery problem with time windows (PDPTW). Both the VRPTW

and the PDPTW are extensions of the CVRP where a single depot, denoted by node 0, must serve a set of

nodes N in a single period with a fleet of vehicles, K, where each vehicle k ∈ K has a capacity Q and can

perform one route. Similar to the CVRP and MTVRP, both the VRPTW and PDPTW can be modeled on

a graph G = (N0,A). However, each node i ∈ N0 has a time window [Ai, Bi] in which the node must be

served. Ai is the earliest start of service time customer i and Bi is the latest. In addition, each customer i has

a service time Si that dictates the time needed to serve the customer. In the VRPTW, each customer i has

a demand, Di, that must be served. This is similar to the CVRP. In the PDPTW, however, the customers,

i ∈ N , are split into two disjoint subsets NP and ND, where NP ∪ND = N . Here, NP = {1, ..., n} denotes

pickup nodes and ND = {n+1, ..., 2n} denotes delivery nodes. A pickup node, i ∈ NP , has a given demand

Di that must be delivered to a corresponding delivery node (i+n) ∈ ND with demand D(i+n) = −Di. Both

node i and node (i+ n) must be served by the same vehicle since we do not allow transshipment and node

i must be served before node (i+ n). For more details on the VRPTW and PDPTW, we refer to Toth and

Vigo (2014).

4.1 The RMIM for the VRPTW

Due to the time windows, we must introduce some new notation to formulate an RMIM for the VRPTW.

First, for readability, we introduce the binary variable upr, which takes the value 1 if a node is not inserted

or removed from position p in route r, and 0 otherwise. Second, we must introduce the variable tpr which

denotes the time a vehicle arrives at position p in route r. To account for inserted clusters, we must introduce

some new time windows. If cluster c is inserted into route r, the time window [Acr, Bcr] represents the time

window within which node i = ir(p
∗
r(c)− 1) located just before c on route r must be served. When visiting

nodes in a cluster, we may encounter waiting times since the vehicle can arrive before the time windows for

one or multiple nodes start. We can minimize the waiting time when setting the time windows and thus set

the traveling time through a cluster equal to a constant. The time window [Acr, Bcr] for inserting cluster c

in route r is defined in Algorithm 2, where cr(p) denotes the node placed in position p ∈ 1, ..., |c| in cluster

c when inserted in route r.

Further, we must introduce additional notation to update the time spent when arriving at different

positions in route r. For the sake of readability, we introduce the parameter T s
ijr which denotes the travel

time between nodes i and j, including the service time of node i in route r, i.e., T s
ijr = Si + Tij . This

parameter is needed if neither node i nor node j is removed from route r or if the nodes located between

nodes i and j are removed. However, if cluster c is inserted in route r we need to keep track of the time

spent between arriving at the node in front of c (ir(p∗r(c) − 1)) and arriving at the node located after c

(ir(p∗r(c))). This relationship is denoted by the parameter T c
cjr, which includes the service time of the node
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Algorithm 2 Time window for customer located just before cluster c in route r

1: Acr = Air(p∗
r(c)−1)

2: Bcr = Bir(p∗
r(c)−1)

3: time = Sir(p∗
r(c)−1) + Tir(p∗

r(c)−1)cr(1)

4: for j = 1 to |c| do

5: if Acr + time ≥ Bcr(j) then

6: Acr = Bcr = 0

7: Break

8: *Stop as it is infeasible to insert cluster c*

9: end if

10: if Bcr + time ≤ Acr(j) then

11: Acr = Bcr

12: Break

13: *Stop as we have forced waiting time*

14: end if

15: Acr = max{Acr, Acr(j) − time}

16: Bcr = min{Bcr, Bcr(j) − time}

17: if j ̸= |c| then

18: time + = Scr(j) + Tcr(j)cr(j+1)

19: end if

20: end for

in front of c, the traveling time needed to visit all nodes in cluster c, the service time for all nodes in c, and

the traveling time from the last node in c to node j. Please note that this relationship is a constant due to

the definition of the time window [Acr, Bcr]. Parameter T c
cjr is defined in Algorithm 3:

Algorithm 3 Travel times including service time when inserting cluster c in route r

1: T c
cjr = Acr

2: T c
cjr += Sir(p∗

r(c)−1)

3: T c
cjr += Tir(p∗

r(c)−1)cr(1)

4: for j = 1 to |c| do

5: T c
cjr = max{T c

cjr, Acr(j)}

6: T c
cjr += Scr(j)

7: if j ̸= |c| then

8: T c
cjr += Tcr(j)cr(j+1)

9: end if

10: end for

11: T c
cjr += Tc(|c|)i

12: T c
cjr −= Acr

10



The predefined position where we can insert nodes and the order in which the nodes are visited in a

cluster is complicated by time windows. For the CVRP and MTVRP, the order is determined by the shortest

path function CSP (istart, c, iend) defined in Section 2. However, the shortest path might not be feasible in

the VRPTW due to time window constraints. Section 4.3 describes how the insertion position of cluster c

in route r, p∗r(c), and the insertion cost, CI
cr, are defined for the VRPTW. The RMIM for the VRPTW can

be defined in the following way:

min
∑
r∈R

CT
r λr −

∑
r∈R

∑
θ∈Θ

∑
p∈P θ

r

CR
θprwprθ +

∑
r∈R

∑
c∈Cr

CI
crzcr (25)

Constraints (5) − (8),∑
r∈R:i∈Nr

(λr − xir) +
∑
r∈R

∑
c∈Cr:i∈c

zcr = 1, i ∈ N , (26)

∑
i∈Nr

Di(λr − xir) +
∑
c∈Cr

DC
c zcr ≤ Qλr, r ∈ R, (27)

∑
c∈Cr:p∗

r(c)=p

zcr + xir(p)r + upr = λr, r ∈ R, p ∈ Pr, (28)

t(p−1)r + T s
ir(p−1)ir(p)r

upr +
∑

c∈Cr:p∗
r(c)=p

T c
cir(p)r

zcr ≤ tp, r ∈ R, p ∈ Pr, (29)

+
∑
θ∈Θ

(T s
ir(p−θ−1)ir(p)r

− T s
ir(p−1)ir(p)r

)w(p−θ)rθ

∑
c∈Cr:p∗

r(c)=p+1

(Bcr −Air(p))zcr +Air(p)(λr − xxir(p)r
) ≤ tpr, r ∈ R, p ∈ Pr \ |Nr| − 1, (30)

∑
c∈Cr:p∗

r(c)=p+1

(Acr −Bir(p))zcr +B0xir(p)r ≥ tpr, r ∈ R, p ∈ Pr \ |Nr| − 1, (31)

+Bir(p)(λr − xir(p)r)

A0(λr −
∑

c∈Cr:p∗
r(c)=1

zcr) +
∑

c∈Cr:p∗
r(c)=1

Acrzcr ≤ t0r, r ∈ R, (32)

B0 ≥ t(|Nr|+1)r, r ∈ R, (33)

λr ∈ {0, 1}, r ∈ R, (34)

xir ∈ {0, 1}, r ∈ R, i ∈ Nr, (35)

zcr ∈ {0, 1}, r ∈ R, c ∈ Cr, (36)

wprθ ∈ {0, 1}, θ ∈ Θ, r ∈ R, p ∈ Pθ
r , (37)

upr ∈ {0, 1}, r ∈ R, p ∈ Pr. (38)

The objective function (25) minimizes transportation costs, while constraints (26) state that all customers

must be served. Constraints (27) ensure that the vehicle capacity is respected. Moreover, constraints (28)

make sure that a node is inserted or removed or that nothing happens at a position p in route r. Constraints

(29) ensure time management, while constraints (30) and (31) state the time windows. In addition, (32) and

(33) state the time windows for the depot. Constraints (34) - (38) define the variable domains.
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4.2 The RMIM for the PDPTW

To formulate the RMIM for the PDPTW we use most of the same notation as for the VRPTW. However,

we need to introduce the variable qpr that denotes the quantity onboard a vehicle after visiting position p

in route r. Additionally, we must introduce the parameter Fcr, which is the largest additional load a vehicle

carries while visiting cluster c in route r compared to the load onboard after visiting the node before c. Fcr

is defined in Algorithm 4:

Algorithm 4 The largest additional load carried while visiting cluster c in route r

1: load = 0

2: Fcr = 0

3: for j = 1 to |c| do

4: load += Dcr(j)

5: if load > Fcr then

6: Fcr = load

7: end if

8: end for

Parameter Fcr is needed to ensure that the vehicle capacity is not breached while serving one of the

customers in cluster c. The calculation of Fcr is illustrated in Figure 2:

0

a

b

c

d
e

f

Route r

Db = 20

De = −40
Dd = 40Dc = −20

Cluster c̃

Node pairs: (a,f), (b,c), (d,e)

Step 0: load = 0 and Fc̃r = 0

Step 1: load = 20 and Fc̃r = 20

Step 2: load = 0

Step 3: load = 40 and Fc̃r = 40

Step 4: load = 0

Fig. 2 A route consisting of the depot and nodes a, and f is changed to a route consisting of the depot and nodes a, b, c, d,

e, and f by inserting a cluster. The additional load the vehicle carries while serving the node is shown to be 40.

Section 4.3 describes how the insertion position of cluster c in route r, p∗r(c), and the insertion cost, CI
cr,

are defined for the PDPTW. The RMIM for the PDPTW can be defined in the following way:

min
∑
r∈R

CT
r λr −

∑
r∈R

∑
θ∈Θ

∑
p∈P θ

r

CR
θprwprθ +

∑
r∈R

∑
c∈Cr

CI
crzcr (39)

Constraints (5) − (8), (26), (28) − (33),

xir = x(i+n)r, i ∈ NP , r ∈ R, (40)
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∑
c∈Cr:i∈c

zcr =
∑

c∈Cr:(i+n)∈c

zcr, i ∈ NP , r ∈ R, (41)

q(p−1)r +Dir(p)upr +
∑

c∈Cr:p∗
r(c)=p

zcr(D
C
c +Dir(p)) ≤ qpr, r ∈ R, p ∈ Pr, (42)

qpr +
∑

c∈Cr:p∗
r(c)=p+1

zcrFcr ≤ Qλr r ∈ R, p ∈ Pr \ |Nr| − 1, (43)

qpr ≥ 0, r ∈ R, p ∈ Pr \ |Nr| − 1, (44)

qpr = 0, r ∈ R, p ∈ {0, |Nr| − 1}, (45)

λr ∈ {0, 1}, r ∈ R, (46)

xir ∈ {0, 1}, r ∈ R, i ∈ Nr, (47)

zcr ∈ {0, 1}, r ∈ R, c ∈ Cr, (48)

wprθ ∈ {0, 1}, θ ∈ Θ, r ∈ R, p ∈ Pθ
r . (49)

The objective function (39) minimizes transportation costs. Furthermore, constraints (40) and (41) state

that the same vehicle must serve a pickup and delivery pair. Constraints (42) are load balancing constraints,

while constraints (43) - (45) ensure that the vehicle capacity is respected. Constraints (46) - (49) state the

variable domains. The precendence between node i and node i + n is taken care of by the node order in

cluster c and by only accepting routes with the correct precedencee order in route set R.

The formulation can be further strengthened by realizing that the load onboard a vehicle must be at

least equal to Di if node i is a pickup node, and not greater than Q − (−Di) if node i is a delivery node.

We can then update constraints (43) and (44):

qpr +
∑

c∈Cr:p∗
r(c)=p+1

zcrFcr ≤ Qλr+ r ∈ R, p ∈ Pr \ |Nr| − 1, (50)

(λr − xi(p) −
∑

c∈Cr:p∗
r(c)=p+1

zcr)min{0, Di(p)},

qpr ≥ max{0, Di(p)}(λr − xi(p)), r ∈ R, p ∈ Pr \ |Nr| − 1. (51)

4.3 The RMIM for the VRPTW and PDPTW in an algorithmic setting

For the VRPTW and PDPTW, we cannot use the definitions for the insertion position of cluster c in route r,

p∗r(c) and the insertion cost, CI
cr, described in Section 2. If we did, most of our insertions would be infeasible

due to time window constraints. For example, the cheapest position to insert a cluster could be between

two nodes with time windows that end before we can even serve some of the nodes in c. Therefore, we must

consider time windows when determining p∗r(c) and the visiting order of nodes in c for the VRPTW and

PDPTW. We achieve this by updating Equation (1):

p∗r(c) = argmin
p∈1,...,|Nr|+1

{CSPTW (ir(p− 1), c, ir(p))− Cir(p−1),ir(p)}, r ∈ R, c ∈ Cr. (52)

Here, the algorithm CSPTW (istart, c, iend) returns the shortest path starting at node istart, visiting all

nodes in c, and ending at node iend while respecting the time windows for all nodes in route r and cluster c.

If it is impossible to add cluster c between nodes istart and iend without making the route infeasible, given

that everything else stays the same, the algorithm returns an error. If all positions p ∈ 1, ..., |Nr|+1 return
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an error, it is not possible to insert cluster c into route r, and the upper bound for zcr will thus be 0 and

Cr will not include cluster c. The cost, CI
cr, of adding cluster c ∈ C to route r ∈ R can, for the VRPTW

and PDPTW, be calculated as:

CI
cr = CSPTW (ir(p

∗
r(c)− 1), c, ir(p

∗
r(c)))− Cir(p∗

r(c)−1),ir(p∗
r(c))

, r ∈ R, c ∈ Cr. (53)

Although CSPTW (ir(p− 1), c, ir(p)) deals with the time windows, it is a rather limiting approach since

a better position might be feasible if we remove something else in the route. Yet, it is very complex to

determine a priori which nodes we can remove to make the insertion feasible. To deal with this problem,

we use the following approach. For all routes in route set R, we make several duplicates where we remove a

single customer in the VRPTW or a single node pair in the PDPTW. For example, route 0-1-2-3-0 in the

VRPTW will have the following three duplicates: 0-2-3-0, 0-1-3-0, and 0-1-2-0. Although this comes at the

expense of a larger route set R, this approach opens up additional insertions that would not be possible

otherwise.

To populate clusters in the VRPTW, we use the same method as for the MTVRP. For the PDPTW,

we use single-node clusters and clusters consisting of a single node pair i and i+ n. If a single-node cluster

is added to a route, the single-node cluster containing the associated delivery or pickup node must also be

added to the same route as described in constraints (40)-(41).

5 Computational study

In this section, we present our computational results. We have tested the proposed matheuristic on a set

of benchmark instances for the MTVRP and warm-started the RMIM for the PDPTW and VRPTW with

the best known solutions found in the literature for benchmark instances for the PDPTW and VRPTW.

To avoid spending an excessively long time closing the dual gap when solving MIPs, we have set a time

limit on all RMIMs. For simplicity, this time limit is set to 1,800 seconds for all instances of the MTVRP,

3,600 seconds for all instances of the VRPTW, and 3,600 seconds and 10,800 seconds, respectively, for

instances with under or over 1,000 customers for the PDPTW. All computational experiments were run on

a 12-core Intel E5-2670v3 processor clocked at 2.3 GHz and 64 GB of RAM. All algorithms are coded in

C++, and the commercial solver Gurobi 9.5.1 has been used. Detailed solution files are publicly available

at http://axiomresearchproject.com/.

5.1 MTVRP

The well-established set of benchmark instances for the MTVRP was introduced by Taillard et al. (1996).

They are constructed from the CMT1-CMT5 and CMT11-CMT12 instances proposed by Christofides et al.

(1979) and instances F11-F12 proposed by Fisher (1994) for the CVRP. Here, all distances are Euclidean.

Several MTVRP instances were constructed from each of the 12 CVRP instances, with many different |K|

and two different versions of T max. For version 1, T max = [1.05z∗/|K|], and T max = [1.1z∗/|K|] for version

2. Here, z∗ is the solution value found by Rochat and Taillard (1995) for the original CVRP instance. This

results in a total of 104 benchmark instances. The distances are not rounded to integers, as in the original

CVRP instances.
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The benchmark instances proposed in Taillard et al. (1996) allow overtime. This means that T max can

be breached; however, this results in overtime which is penalized by a factor of 2. Please note that a solution

without overtime is always considered superior to one with overtime, even if the total costs are higher. This

is handled by adding an additional large cost to the overtime variable in this work. All best known solutions

to the benchmark instances were summarized in Cattaruzza et al. (2018), and, to the best of our knowledge,

no published work has reported improved solutions since then. Thus, we compare our solutions with the

best known solutions and not with individual solution methods. The comparison is summarized in Table 1.

Here, “Best Known” refers to the best known solution value reported in Cattaruzza et al. (2018). If the

solution is optimal, it is denoted by an asterisk. “Overtime” indicates whether the solution includes overtime

or not. Please note that a solution can be both optimal and include overtime. In this case, there are no

feasible solutions without overtime. The column “This paper” refers to the solution value found by our

method, while the “Overtime” column to the right denotes whether our solution includes overtime. “RMIM”

refers to how much better our final solution is than the solution found using a CVRP and bin packing solver.

In the “This paper” column, best known solutions are indicated in bold. We can find the best known solution

for 76 of 104 instances. Here, 28 of them are new to the literature. We can see that the majority of the best

known solutions, 73 of 76 instances, were not improved by the RMIM. This means that the best known

solution consists purely of the routes created by solving the instance as a CVRP. For the solutions that were

improved by the RMIM, the average improvement was 1.69% for version 1 and 1.32% for version 2. Note

that the improvement can be negative if the RMIM turns a solution with overtime into a solution without.

5.2 VRPTW

For the VRPTW, there exist two well-known sets of benchmark instances. The first one was proposed

by Solomon (1987) and consists of 25, 50, or 100 customers. The second set was proposed by Gehring

and Homberger (1999) and consists of 200, 400, 600, 800, or 1,000 customers. Both sets use Euclidean

distances, and the nodes in each instance are clustered (C), randomly distributed (R), or a mix (RC). In

addition, previous works have used both a hierarchical objective where the primary goal is to reduce the

number of vehicles, and a pure cost objective when solving the benchmark instances. We have used the

latter, and an overview of all best known solutions for this version can be found in the CVRPLib (Uchoa

et al., 2017) webpage (http://vrp.atd-lab.inf.puc-rio.br/index.php/en/). All instances in Solomon (1987)

have been solved to optimality, while 96 of 300 solutions are proven optimal for the benchmark instances of

Gehring and Homberger (1999).

By warm-starting the RMIM for the VRPTW, we improved 20 of the 204 instances not solved to proven

optimality. This translates to 9% of the instances. As seen in Table 2, several of the improvements are

rather marginal in terms of solution value. Considering that the VRPTW has received much attention and

numerous solution methods exist, these are still very good numbers. Only one of the 20 improved instances

has clustered nodes, and 13 have randomly distributed nodes. This indicates that the RMIM works better on

non-clustered instances or that other solution methods perform better on clustered instances, and a larger

number of optimal solutions have been found for these instances. A possible explanation for the former is

that the clusters used in the RMIM need to be larger to be efficient on clustered instances and that replacing

and inserting subparts of each cluster is not fruitful.
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Version 1 Version 2

Instance |K| Best known Overtime This paper Overtime RMIM Best known Overtime This paper Overtime RMIM

CMT1 1 524.61* No 524.61 No 0.00 % 524.61* No 524.61 No 0.00 %

2 533.00* No 546.68 No 3.87 % 529.85* No 529.85 No 2.00 %

3 569.54 Yes 574.57 Yes 4.37 % 552.68 No 557.51 Yes 1.98 %

4 564.07 Yes 618.20 Yes 4.01 % 546.29* No 605.85 Yes 4.14 %

CMT2 1 835.26* No 835.26 No 0.00 % 835.26* No 835.26 No 0.00 %

2 835.26* No 835.26 No 0.00 % 835.26* No 835.26 No 0.00 %

3 835.26* No 835.26 No 0.00 % 835.26* No 835.26 No 0.00 %

4 835.26* No 835.26 No 0.00 % 835.26* No 835.26 No 0.00 %

5 835.80* No 838.18 No 0.04 % 835.26* No 835.26 No 0.00 %

6 858.58 No 886.93 Yes 3.38 % 839.22* No 862.00 No 3.14 %

7 866.58 Yes 928.36 Yes 0.04 % 844.70 No 904.13 Yes 0.06 %

CMT3 1 826.14* No 826.14 No 0.00 % 826.14 No 826.14 No 0.00 %

2 826.14* No 826.14 No 0.00 % 826.14 No 826.14 No 0.00 %

3 826.14* No 826.14 No 0.00 % 826.14 No 826.14 No 0.00 %

4 829.45 No 832.22 Yes 0.00 % 826.14 No 826.14 No 0.00 %

5 832.89 No 930.34 Yes 0.61 % 832.34 No 867.53 No 3.62 %

6 836.22 No 893.79 Yes 0.91 % 834.35 No 866.42 No 2.22 %

CMT4 1 1031.00 No 1028.42 No 0.00 % 1031.07 No 1028.42 No 0.00 %

2 1031.07 No 1028.42 No 0.00 % 1030.45 No 1028.42 No 0.00 %

3 1028.42 No 1028.42 No 0.00 % 1031.59 No 1028.42 No 0.00 %

4 1031.10 No 1028.42 No 0.00 % 1031.07 No 1028.42 No 0.00 %

5 1031.07 No 1028.42 No 0.00 % 1030.86 No 1028.42 No 0.00 %

6 1034.61 No 1051.23 No -0.16 % 1030.45 No 1031.07 No -0.14 %

7 1068.59 No 1076.55 Yes 0.16 % 1036.08 No 1071.52 No -3.31 %

8 1056.54 No 1084.10 Yes 3.76 % 1044.32 No 1065.13 No 2.33 %

CMT5 1 1302.43 No 1291.45 No 0.02 % 1299.86 No 1291.45 No 0.02 %

2 1302.15 No 1291.45 No 0.00 % 1305.35 No 1291.45 No 0.00 %

3 1301.29 No 1291.45 No 0.00 % 1301.03 No 1291.45 No 0.00 %

4 1304.78 No 1291.45 No 0.00 % 1303.65 No 1291.45 No 0.00 %

5 1300.02 No 1291.45 No 0.00 % 1300.62 No 1291.45 No 0.00 %

6 1303.37 No 1291.45 No 0.00 % 1306.17 No 1291.45 No 0.00 %

7 1309.40 No 1291.45 No 0.00 % 1031.54 No 1291.45 No 0.00 %

8 1303.91 No 1291.45 No 0.00 % 1308.78 No 1291.45 No 0.00 %

9 1307.93 No 1304.24 No 0.12 % 1307.25 No 1291.45 No 0.00 %

10 1323.01 No 1314.10 Yes 0.00 % 1308.81 No 1291.45 No 0.00 %

CMT11 1 1042.11* No 1042.11 No 0.00 % 1042.11* No 1042.11 No 0.00 %

2 1042.11* No 1042.11 No 0.00 % 1042.11* No 1042.11 No 0.00 %

3 1042.11* No 1042.11 No 0.00 % 1042.11* No 1042.11 No 0.00 %

4 1078.64 No 1055.09 Yes 0.00 % 1042.11* No 1042.11 No 0.00 %

5 1042.11* No 1042.11 No 0.00 % 1042.11* No 1042.11 No 0.00 %

CMT12 1 819.56* No 819.56 No 0.00 % 819.56* No 819.56 No 0.00 %

2 819.56* No 819.56 No 0.00 % 819.56* No 819.56 No 0.00 %

3 819.56* No 819.56 No 0.00 % 819.56* No 819.56 No 0.00 %

4 819.56* No 819.56 No 0.00 % 819.56* No 819.56 No 0.00 %

5 845.56 No 836.80 Yes 0.00 % 824.78* No 820.78 Yes 0.00 %

6 845.48 Yes 845.48 Yes 0.00 % 823.14* No 824.16 No -0.05 %

F11 1 241.97 No 241.97 No 0.00 % 241.97 No 241.97 No 0.00 %

2 250.85 No 249.97 Yes 0.00 % 241.97 No 241.97 No 0.00 %

3 256.93 Yes 259.47 Yes 0.82 % 254.07 No 254.07 No -0.20 %

F12 1 1162.96 No 1162.96 No 0.00 % 1162.96 No 1162.96 No 0.00 %

2 1162.96 No 1162.96 No 0.00 % 1162.96 No 1162.96 No 0.00 %

3 1162.96 No 1162.96 No 0.00 % 1162.96 No 1162.96 No 0.00 %

Table 1 Results for MTVRP instances.
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Instance Best known solution Our solution

R1_6_4 15721.4 15720.8

R1_8_3 29304.5 29301.2

R1_8_5 33494.2 33494.0

R1_8_10 30918.4 30918.3

R2_8_1 24968.8 24963.8

R2_8_5 22798.2 22795.6

R2_8_8 12611.7 12611.6

C1_10_8 41652.1 41648.0

R1_10_1 53046.5 53026.1

R1_10_2 48263.1 48261.6

R1_10_3 44677.1 44673.3

R1_10_6 46930.3 46928.2

R2_10_4 17811.5 17811.4

R2_10_8 17403.8 17403.7

RC1_10_1 45790.8 45790.7

RC1_10_3 42122.0 42121.9

RC1_10_6 44903.6 44898.2

RC1_10_7 44417.1 44409.0

RC1_10_9 43858.1 43858.0

RC2_10_4 15657.0 15654.7

Table 2 Solution costs for the 20 new best

known VRPTW solutions

5.3 PDPTW

Several sets of benchmark instances exist for the PDPTW, and four of them are well known. The benchmark

sets proposed by Ropke et al. (2007) and Ropke and Cordeau (2009) are tailored towards exact methods and

all instances have been solved to optimality. However, two sets where there are still open instances exist.

The first set was proposed by Li and Lim (2001) and consists of six groups of instances with 100, 200, 400,

600, 800, or 1,000 customers. There are 354 instances in total, and the distances are Euclidean. In addition,

the instances in each group belong to one of six classes: LC1, LC2, LR1, LR2, LRC1, and LRC2. The

customers in LC are clustered, the customers in LR are randomly distributed and the customers in LRC

are partially clustered and randomly distributed. The −1 instances have a short scheduling horizon, while

the −2 instances have a longer one. The second set of benchmark instances was proposed by Sartori and

Buriol (2020). Here, the instances were generated using real-world data for addresses and travel times. The

set consists of 300 instances and can be split into 12 groups with between 100 and 5,000 customers. Both

sets of instances have a hierarchical objective: 1) Minimize the number of vehicles first and 2) Minimize

total distance second.

For the first set of instances, an overview of the best known solutions can be found at https://www.sintef.

no/projectweb/top/pdptw/. Recent contributors to this overview include Christiaens and Vanden Berghe

(2020), Sartori and Buriol (2020), and several unpublished works. We were not able to improve any solutions

from this set by warm-starting the RMIM with the best known solution.

For the second set of instances, an overview of the best known solutions can be found at https://github.

com/cssartori/pdptw-instances/tree/master/solutions. Here, 246 of 300 solutions provided by the original
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authors have been improved by three different unpublished works. By warm-starting the RMIM with the

best known solutions, we improved 203 of 300 instances. Two of the solutions use fewer vehicles than the

previous best known solutions did. The results for the other 201 instances are summarized in Table 3.

Here, “# of NBKs” refers to the number of new best known solutions, “Avg. units” refers to the average

improvement of the objective function in terms of units, while “Avg. [%]” refers to the average improvement

in terms of percentage. As we can clearly see, the RMIM is the method with the most best known solutions.

The number of customers in the instances we improved was in the range of 200 to 5,000, and all instances

except one had more than 200 customers. We improved all instances in the range of 1500-2,500 and noticed

that for several of the largest instances we spent almost all of the allocated time in the root node. Hence,

we might have found additional improvements if we had increased the time limit for the largest instances.

The reason we were more successful on the second set is likely that fewer researchers have worked on this

benchmark set, and fewer optimal solutions have already been found. Also, it seems that the RMIM works

better on instances where the distances are integer numbers. To adjust for the hierarchical objective, we

added an additional large cost to each route.

Customers # of NBKs Avg. units Avg. [%]

100 0 – –

200 1 3.0 0.09

400 6 2.5 0.09

600 16 9.8 0.23

800 21 19.7 0.23

1000 23 21.7 0.24

1500 24 25.5 0.25

2000 25 67.0 0.33

2500 25 49.7 0.22

3000 23 102.0 0.28

4000 21 60.7 0.15

5000 16 10.1 0.03

Total/Avg. 201 41.8 0.22

Table 3 Average improvements among new best

known PDPTW solutions with unchanged vehicle

count.

6 Concluding remarks

This paper presents new exact RMIMs for the PDPTW and VRPTW and a novel matheuristic for the

MTVRP. Improvement heuristics are important in solving vehicle routing problems, and RMIMs have been

shown to be efficient on the SDVRP, IRP, and PRP. These are vehicle routing problems with a low degree of

intra-route constraints. Our computational studies indicate that RMIMs can be a valuable tool for solving

vehicle routing problems with a larger degree of intra-route constraints as well. The MTVRP, PDPTW, and

VRPTW are all problems where time plays a significant part and thus include several intra-route constraints.

Our proposed matheuristic for the MTVRP is able to find the best known solution for 76 of 104 benchmark

18



instances where 28 of them are new to the literature. For the VRPTW and PDPTW, we find 20 and 203

new best known solutions, respectively, by warm-starting the RMIMs with the best known solutions from

the literature. These are very good results considering that the VRPTW and PDPTW have received a lot

of attention, and numerous solution methods exist for both problems.

The findings of our study confirm that RMIMs are an interesting research direction and that they

can complement existing solution methods. As demonstrated in the computational study, they can find

improvements that other neighborhood operators have failed to find. In addition, we have demonstrated that

they can be formulated for problems with a high degree of intra-route constraints. However, they are slow

to solve and suffer from the presence of a great number of constraints and weak big-M constants. Hence,

future research should look at how they can be simplified and whether simpler operators that explore the

same neighborhoods as the RMIMs can be designed.
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